Generative Vector Quantisation

نویسندگان

  • Machiel Westerdijk
  • Wim Wiegerinck
چکیده

{ Based on the assumption that a pattern is constructed out of features which are either fully present or absent, we propose a vector quantisation method which constructs patterns using binary combinations of features. For this model there exists an eecient EM-like learning algorithm which learns a set of representative codebook vectors. In terms of a generative model, the collection of allowed binary states`generates' the set of codebook vectors. The method, therefore , provides not only a compact description of the data in terms of clusters, but also an explanation of the individual clusters in terms of common elementary features. Preliminary results on image compression and handwritten digit analysis indicate that our approach is an interesting and computationally inexpensive alternative to more complex probabilistic generative graphical models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Discrete Representation Learning

Learning useful representations without supervision remains a key challenge in machine learning. In this paper, we propose a simple yet powerful generative model that learns such discrete representations. Our model, the Vector QuantisedVariational AutoEncoder (VQ-VAE), differs from VAEs in two key ways: the encoder network outputs discrete, rather than continuous, codes; and the prior is learnt...

متن کامل

Efficient product code vector quantisation using the switched split vector quantiser

In this article, we first review the vector quantiser and discuss its well-known advantages over the scalar quantiser, namely the space-filling advantage, the shape advantage, and the memory advantage. It is important to understand why vector quantisers always perform better than any other quantisation scheme for a given dimension, as this will provide the basis for our investigation on improvi...

متن کامل

Classified Vector Quantisation and population decoding for pattern recognition

Learning Vector Quantisation (LVQ) is a method of applying the Vector Quantisation (VQ) to generate references for Nearest Neighbour (NN) classification. Though successful in many occasions, LVQ suffers from several shortcomings, especially the reference vectors are prone to diverge. In this paper, we propose a Classified Vector Quantisation (CVQ) to establish VQ for classification. By CVQ, eac...

متن کامل

Hybrid 3D Fractal Coding with Neighbourhood Vector Quantisation

A hybrid 3D compression scheme which combines fractal coding with neighbourhood vector quantisation for video and volume data is reported. While fractal coding exploits the redundancy present in different scales, neighbourhood vector quantisation, as a generalisation of translational motion compensation, is a useful method for removing both intraand interframe coherences. The hybrid coder outpe...

متن کامل

Automatic Classification of LFM Signals for Radar Emitter Recognition Using Wavelet Decomposition and LVQ Classifier

The paper presents a novel approach, based on the wavelet decomposition and the learning vector quantisation algorithm, to automatic classification of signals with linear frequency modulation, generated by radar emitters. The goal of radar transmitter classification is to determine the particular transmitter, from which a signal originated, using only the just received waveform. To categorise a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006